Evidence for selective mortality in marine environments: the role of fish migration size, timing, and production type.

> Andrew Claiborne WDFW Fish Ageing Lab Olympia, Washington Co-authors: JA Miller, LA Weitkamp, DJ Teel, RL Emmett

Washington Department of FISH and WILDLIFE

Salmon Early Ocean Ecology

Critical life history transition

Marine mortality greatest during first year at sea (Pearcy1992)

- Size at marine entry (Claiborne et al. 2011)
- timing of marine entry (Scheuerell et al. 2009)
- ocean conditions (Burke et al. 2013)
- early marine growth (Tomaro et al. 2012)
- body condition (Miller et al. 2013)

Ocean

Estuary

What We Don't Know

Study Objectives

- Directly compare migratory patterns of hatchery and natural juveniles
- Determine if there is evidence for selective mortality during early marine residence related to production type, migration timing and size

Study Approach

- Develop a model to discriminate between hatchery and natural juveniles using otolith structure i.e. Zang et al. 1998 & 2000, Barnett-Johnson et al. 2007
- Compare juveniles when they first enter marine waters with survivors after their first summer at sea
- Tools- stock of origin, size at and timing of marine entry, marine growth, and origin
 - genetic stock identification
 - otolith chemistry and structure
 - physical tags

UCR Su/F Stock

- GSI (D. J. Teel)
 - Mean probability of assignment 96% (7.2% SD)
- Subyearlings
 - Coastal residents (Fisher et al. 2007 and in press)
- Currently impossible to assess impact of hatchery production
 - 30% unmarked

Fish Collections

- sources (n = NAMES EPS Study & Plume
- Abrigginginging
 - 2940 & 2011
- ~60 • ~60 individuals/yr individuals/yr

Primary Tool is Otoliths

- Otolith size related to fish size
- Otoliths are formed in daily increments
- Otoliths incorporate elements in relation to abundance in the environment

Production Type Classification (H vs N)

 H and N assignment of UNMARKED estuary and ocean fish using otolith structure

ach, model selection

* CVIW / e -14.3+ 107.7* C ion typeSr 57% of

H and N in aividual assign

 Corrected % of unmarked H fish using classification model assignment (Claiborne 2013)

Zhang and Beamish 1998,

- Corrected %H in Barnettperoemsblretased2007, ked in each year (Daly et al. 2011, Weitkamp et Claiborne 2013

Size & Timing of Marine Entry, Growth

Size at freshwater emigration (FE)

- LA-ICPMS to quantify Sr:Ca
- Convert to FL $_{5.44}$ R² = 0.77; p < 0.01; n = 133 FLFE = OWFE * 0.07 (± 0.004) 7.22 (±

Timing of FE

 Daily increments & date of capture

Marine growth (%bl/d)

• Daily increments, size at FE & capture

Marine residence

• Daily increments

Hatchery vs Natural-Estuary

- Overall timing of freshwater emigration May-September
 - ~80% of fish < 3d residence, but residence can > 2 months
 - In 2011 FE of natural fish ~28 d later than H in 2011

Day of Year

Hatchery vs Natural-Ocean

- Marine distribution similar
 - Newport to La push
- Overall size at freshwater emigration similar
 - ~100 mm at FE ranged 75 to 150
- Marine growth similar (0.9 ± 0.1 %bl/d)

Estuary vs Ocean: Contribution of H&N

4-21% Increase in N

Estuary vs Ocean: Contribution of H&N

11-29% Increase in N

Estuary vs Ocean: Hatchery Size at FE

 No difference in distribution of size at FE (KS-Test p > 0.40)

Estuary vs Ocean: Natural Size at FE

- Suggestive difference in distribution of size at FE 2011 (p = 0.06 KS-Test)
- Large and later N fish in estuary not represented in ocean catches

Summary of Findings

- Suggestive evidence that the contribution of natural fish increased, particularly in 2011
 - Increased survival (consistent with higher fitness, differences in freshwater selection & behavioral differences)
- No evidence that bigger at marine entry is better
 - Only in years of record low adult survival i.e. 2005 (Woodsen et al. 2013)?
- In 2011 larger and later migrating natural fish not present later in ocean
 - Differential mortality? role of sample bias is unknown
- ~20% of UCR Su/F fish had resided > 3d before capture in estuary
 - Less residence than LCR stocks (Campbell 2010) but certainly a utilized habitat by an UCR stock

Acknowledgments

This research was supported by the Bonneville Power Administration; National Oceanic and Atmospheric Administration (NOAA) Fisheries; The Mamie Markham Research Award; Washington County Flyfishers; Washington Department of Fish and Wildlife; and the Flyfishers Club of Oregon

This work would not have been possible without the countless individuals in the plume and estuary group, and samples from WDFW

- Robert Emmett
 Marisa Litz
- Joe Fisher
 - Joe risher
- Cheryl Morgan
- Susan Hinton
 - David Teel
- Laurie Weitkamp
- Paul Bentley
 - Brian
- Rick Nelson
- Brian
- Jesse Lamb

- Paul HoffarthTodd Miller
- Cindy Bucher
- Kym Jacobson
- Andrew Claxton
- James Losee
 - Greg Hutchinson
- Lance Campbell
- And countless others.....you know who you are

Estuary and Ocean: Hatchery Timing of FE

Day of Freshwater Emigration

 2011- earlier migrating H fish in estuary less represented later in the ocean (p < 0.01 KS-test)

Estuary and Ocean: Natural Timing of FE

Day of Freshwater Emigration

 2011 later migrating N fish in estuary less represented later in the ocean (KS-Test p < 0.01)

Artificial Propagation Background

- Occurred for over 2000 years in Asia
- Stocking early life stages into natural environments

- Reduced
 fitness
- Behavioral changes
- Reduced survival

Araki and Schmid 2010

Fitted Values

Chapter 2

Fish Collection Estuary

- FL at capture

– % marked UCR Su/F

- % UCR Su/F

Channel

Study	Year	Months Sampled	n	FL _c (mm)	% Catch	% Marked			
Estuary Channel	2010	April-July, September	53	110	25	43			
Estuary Intertidal	2010	April-September	5	118	4	50			
Estuary Channel	2011	April-September	75	106	33	52			
Estuary Intertidal	2011	April-September	14	77	7	50			
					Chapter 3				

Unmarked Hatchery Fish

 2002-2011 30-80% released unmarked in the Columbia River

Otolith Structure I Measured

27. Ottelijth widthat than entremented (TC) than an entremediate (TC) that the providence (TC) that the providence (TC) the composition of the providence (TC) t

Results: Otolith Structure

HOW, EOW, TC, SD, CVIW different between H and N (p < 0.05)

Chapter 2

PE, MIW not different (p > 0.05)

Fish Collections for Classification Model

Rearing Area	n	Source	Adult Run Time	FL (mm)	Emigration Year	Origin
Lower Wenatchee River	50	R	Su	40 (3.6)	2011	N
Hanford Reach Columbia River	17	R	Fa	44 (3.3)	2012	Ν
Carlton Rearing Pond	9	Н	Su	37 (4.1)	2011	Н
Priest Rapids Hatchery	2 (2)	CWT	Fa	167 (22.1)	2010	Н
Umatilla Hatchery	3 (2)	CWT	Fa	134 (39.7)	2010 & 2011	Н
Klickitat Hatchery	2 (2)	CWT	Fa	99 (27.7)	2010 & 2011	Н
Little White Salmon Hatchery	2 (2)	CWT	Fa	115 (29.5)	2010 & 2011	Н
Similkameen Rearing Pond	7	Н	Su	42 (4.3)	2011	Н
Wenatchee Rearing Pond	20	Н	Su	43 (3.1)	2011	Н

Chapter 2H

- % Hatchery = ((NM / PM_{HR}) / TI) * 100
- % Hatchery = ((NUM * PH) + NM) / TI) * 100

Study Hypothesis

- Hatchery fish experience negative size selection during early marine residence
- Natural-origin fish will be smaller than hatchery conspecifics at marine entry but do not experience negative size-selective mortality
- The timing of marine entry will be more protracted for natural-origin Chinook salmon

Chapter 3