Evidence for selective mortality in marine

 environments: the role of fish migration size, timing, and production type.Andrew Claiborne
WDFW Fish Ageing Lab Olympia, Washington
Co-authors: JA Miller, LA Weitkamp, DJ Teel, RL Emmett

Salmon Early Ocean Ecology

Critical life history transition

Marine mortality greatest during first year at sea

- size at marine entry (atbone etal 2011)
- timing of marine entry (samaumericerar:zoci)
- ocean conditions (arrice cal 20013$)$
- early marine growth (Tomenco etal 2012)
- body condition (लnilere eal 2013)

What We Don't Know

- In some popula H , $330-80 \% \mathrm{H}$ released unmarked in ine Columbia River 20022011

Study Objectives

- Directly compare migratory patterns of hatchery and natural juveniles
- Determine if there is evidence for selective mortality during early marine residence related to production type, migration timing and size

Study Approach

- Develop a model to discriminate between hatchery and natural juveniles using otolith structure i.e. Zang et al. 1998 \& 2000, Barnett-Johnson et al. 2007
- Compare juveniles when they first enter marine waters with survivors after their first summer at sea
- Tools- stock of origin, size at and timing of marine entry, marine growth, and origin
- genetic stock identification
- otolith chemistry and structure
- physical tags

UCR Su/F Stock

- GSI (D. J. Teel)
- Mean probability of assignment 96\% (7.2\% SD)
- Subyearlings
- Coastal residents (Fisher et al. 2007 and in press)
- Currently impossible to assess impact of hatchery production
- 30% unmarked (Remis)

Fish Collections

SO CCES H =

- NEFSEPS
- SturdKs Plume
- ABnibay
- Sentrakán =
- ~60
indivduals/yryr

Primary Tool is Otoliths

- Otolith size related to fish size
- Otoliths are formed in daily increments
- Otoliths incorporate elements in relation to abundance in the environment

Production Type Classification (H vs N)

- H and N assignment of UNMARKED estuary and ocean fish using otolith structure

Size \& Timing of Marine Entry, Growth

Size at freshwater emigration (FE)

- LA-ICPMS to quantify Sr:Ca
- Convert to FL $\begin{aligned} & \text { flef }=0 \text { weE } * 0.07(\pm 0.004)-7.22(t\end{aligned}$ 5.44) $R^{2}=0.77 ; p<0.01 ; n=133$

Timing of FE

- Daily increments \& date of capture

Marine growth (\%bl/d)

- Daily increments, size at FE \& capture

Marine residence

- Daily increments

Hatchery vs Natural- Estuary

- Overall timing of freshwater emigration May-September
- ~80\% of fish < 3d residence, but residence can > 2 months
- In 2011 FE of natural fish ~28 d later than H in 2011

Estuary Timing of FE and Residence

$=N$
$0=\mathrm{H}$

Entered B / M water mid May

Hatchery vs Natural-Ocean

- Marine distribution similar
- Newport to La push
- Overall size at freshwater emigration similar
- ~100 mm at FE ranged 75 to 150
- Marine growth similar (0.9 $\pm 0.1 \% \mathrm{bl} / \mathrm{d}$)

Estuary vs Ocean: Contribution of H \& N

Estuary 2010 $\mathrm{N}=37-38 \%$ $H=62-63 \%$

Ocean 2010 $\mathrm{N}=41-59 \%$ $H=41-59 \%$

4-21\% Increase in N

Estuary vs Ocean: Contribution of H \& N


```
Estuary 2011 \(N=24-36 \%\) \(H=64-76 \%\)
Ocean 2011 \(\mathrm{N}=47-53 \%\)
\(H=47-53 \%\)
```

11-29\% Increase in N

Estuary vs Ocean: Hatchery Size at FE

- No difference in distribution of size at FE (KS-Test $p>0.40$)

Estuary vs Ocean: Natural Size at FE

- Suggestive difference in distribution of size at FE 2011 ($p=0.06$ KSTest)
- Large and later N fish in estuary not represented in ocean catches

Summary of Findings

- Suggestive evidence that the contribution of natural fish increased, particularly in 2011
- Increased survival (consistent with higher fitness, differences in freshwater selection \& behavioral differences)
- No evidence that bigger at marine entry is better
- Only in years of record low adult survival i.e. 2005 (Woodsen et al. 2013)?
- In 2011 larger and later migrating natural fish not present later in ocean
- Differential mortality? role of sample bias is unknown
- ~20\% of UCR Su/F fish had resided > 3d before capture in estuary
- Less residence than LCR stocks (Campbell 2010) but certainly a utilized habitat by an UCR stock

Acknowledgments

This research was supported by the Bonneville Power Administration; National Oceanic and Atmospheric Administration (NOAA) Fisheries: The Mamie Markham Research Award; Washington County Flyfishers; Washington Department of Fish and Wildlife; and the Flyfishers Club of Oregon

This work would not have been possible without the countless individuals in the plume and estuary group, and samples from WDFW

- ERobert Emmetf
- Paul Hoffarth MarisaLitz Todd Miller
- Joe risher ans. Cindy Bucher
a-Cheryl Morgan $\rightarrow \cdots$ Kym Jacobson
- Susan Hinton
- David Teel
- Laurie Weitkamp
- Paul Bentley
- Andrew Claxton
- James Losee
- Greg Hutchinson
- Lance Campbell
- And countless others.....you know who you are
- Rick Nelson
- Brian
- Jesse Lamb

Estuary and Ocean: Hatchery Timing of FE

- 2011- earlier migrating H fish in estuary less represented later in the ocean ($p<0.01 \mathrm{KS}$-test)

Estuary and Ocean: Natural Timing of FE

- 2011 later migrating N fish in estuary less represented later in the ocean (KS-Test $p<0.01$)

Artificial Propagation Background

- Occurred for over 2000 years in Asia
- Stocking early life stages into natural environments

- Reduced fitness
- Behavioral changes
- Reduced survival

Araki and Schmid 2010

Results: Classification Model

Origin $=e^{\beta_{0}+\beta_{1}}{ }^{*}$ CVIW $+/ e^{\beta_{0}+\beta_{1}}$ *CVIW +1

- Final model is CVIW
- Accuracy is 92% (jack knife)
- Independent validation 18 of 20 fish correctly classified

Fitted Values

Fish Collection Estuary

- Compared UCR Su/F subs
- FL at capture
- \% UCR Su/F
- \% marked UCR Su/F

Intertidal

Channel

	Year	Months Sampled	n	$\mathrm{FL}_{c}(\mathrm{~mm})$	$\%$ Catch	Marked
Study	2010	April-July, September	53	110	25	43
Estuary Channel	April-September	5	118	4	50	
Estuary Intertidal	2010	April-September	75	106	33	52
Estuary Channel	2011	April-September	14	77	7	50
Estuary Intertidal	2011					Chapter 3

Unmarked Hatchery Fish

- Subyearlings
- 2002-2011 30-80\% released unmarked in the Columbia River

Otolith Structure I Measured

Results: Otolith Structure

- HOW, EOW, TC, SD, CVIW different between H and N($p<0.05$)
- PE, MIW not different ($p>0.05$)

Chapter 3

Fish Collections for Classification Model

Rearing Area	n	Source	Adult Run Time	$\mathrm{FL}(\mathrm{mm})$	Emigration Year	Origin
Lower Wenatchee River	50	R	Su	$40(3.6)$	2011	N
Hanford Reach Columbia River	17	R	Fa	$44(3.3)$	2012	N
Carlton Rearing Pond	9	H	Su	$37(4.1)$	2011	H
Priest Rapids Hatchery	$2(2)$	CWT	Fa	$167(22.1)$	2010	H
Umatilla Hatchery	$2(2)$	CWT	Fa	$134(39.7)$	$2010 \& 2011$	H
Klickitat Hatchery	$2(2)$	CWT	Fa	$115(29.5)$	$2010 \& 2011$	H
Little White Salmon Hatchery	7	H	Su	$42(4.3)$	$2010 \& 2011$	H
Similkameen Rearing Pond	20	H	Su	$43(3.1)$	H	
Wenatchee Rearing Pond			2011	H		

Chapter 2H

- \% Hatchery = ((NM /

PM ${ }_{H R}$) / TI) * 100

- \% Hatchery = ((NUM * PH) + NM) / TI) * 100

Study Hypothesis

- Hatchery fish experience negative size selection during early marine residence
- Natural-origin fish will be smaller than hatchery conspecifics at marine entry but do not experience negative size-selective mortality
- The timing of marine entry will be more protracted for natural-origin Chinook salmon

